WCTE 2014
CONFERENCE PROGRAM

Monday, August 11 - Morning

Hall 200A
WCTE/FPS Opening and Plenary Session

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 08:45</td>
<td>WCTE/FPS Opening Ceremony</td>
<td></td>
</tr>
<tr>
<td>08:45 – 09:15</td>
<td>Keynote 1. Québec: the City that Wood Built</td>
<td>Jean-Claude Mercier, Canada</td>
</tr>
<tr>
<td>10:15 – 10:45</td>
<td>Special address from the Honourable Greg Rickford</td>
<td>Minister of Natural Resources and Minister for the Federal Economic Development Initiative for the Northern Ontario</td>
</tr>
</tbody>
</table>

Hall 200BC
Coffee Break - Exhibition and Poster Display

Hall 206A
Materials and Products

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>Potential of CLT Produced from Non-Structural Grade Australian Pinus Radiata</td>
<td>Christophe Sigrist, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Feasibility of Using Poplar as Cross Layer to Fabricate Cross-Laminated Timber</td>
<td>Meng Gong, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Estimation of Bending Stiffness, Moment Carrying Capacity and Internal Shear Force of Sugi CLT Panel</td>
<td>Minoru Okabe, Center for Better Living, Japan</td>
</tr>
</tbody>
</table>

Hall 206B
Connections

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>An Algorithm for the Shear Check of Dowelled Connections with Combined Moment and Lateral Loading</td>
<td>Panagiotis Patlakas, Southampton Solent University, UK</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Moment Resistance of Post-and-Beam Joints with Concealed Metallic Connectors</td>
<td>Sang-Joon Lee, Korea Forest research Institute, Korea</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Design Method for Coupled-Splice Timber Moment Connections</td>
<td>Pouyan Zarnani, University of Auckland, New Zealand</td>
</tr>
</tbody>
</table>

Hall 204AB
Structural Systems

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>Development of Ultra-Thin Timber-Concrete Composite Upgrades</td>
<td>Jonathan Skinner, Ramboll UK Ltd., UK</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Linear Elastic Behaviour of T-Shaped Timber-to-Concrete Beam With Uncertain Parameters</td>
<td>Marc Oudjene, Université de Lorraine, France</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Timber-Steel Hybrid Beams for Multi-Storey Buildings: Design Criteria, Calculation and Tests</td>
<td>Wolfgang Winter, Vienna University of Technology, Austria</td>
</tr>
</tbody>
</table>
Monday, August 11 - Morning

Hall 205ABC

WCTE 4.1 MODERATOR

INNOVATIVE STRUCTURES

Iztok Sustersic, CBd, Slovenia

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>Field Testing on Innovative Timber Structures</td>
<td>Claude Leyder, ETH Zürich, Switzerland</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>A Modular Timber Construction System of Hollow-Box Elements</td>
<td>Roman Hausammann, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Seismic Shaking Table Testing of Glass-Timber Buildings</td>
<td>Bostjan Ber, Kager Hisa, Slovenia</td>
</tr>
</tbody>
</table>

Hall 202

WCTE 5.1 MODERATOR

SERVICEABILITY/FIRE SAFETY/REHABILITATION

Andrew Harmsworth, GHL Consultants Ltd., Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>Monitoring of Vertical Movement In a 5-Storey Wood Frame Building in Costal British Columbia</td>
<td>Jieying Wang, FPInnovations, Canada</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Structural Safety Thanks to Quality: Plan Robustness, Build with Checks, Monitor Permanently</td>
<td>Andreas Müller, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Long-Term In-Situ Measurements of Displacement, Temperature and Relative Humidity in a Multi-Storey Residential CLT-Building</td>
<td>Erik Serrano, Linnaeus University, Sweden</td>
</tr>
</tbody>
</table>

Hall 200A

WCTE 6.1 MODERATOR

ARCHITECTURAL ACHIEVEMENTS I

Michael Flach, University of Innsbruck, Austria

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 11:20</td>
<td>Glulam Structures in New Suspended Walkways in Brasilia, Brazil</td>
<td>Roberto Lecomte De Mello, Spirale Architecture, Brazil</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Hollow Timber Poles: Te Wharehou O Tuhoe Living Building Challenge</td>
<td>Mark Batchelar, mb Consulting Engineers, New Zealand</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>South Hedland Performance Shell. South Hedland, Western Australia</td>
<td>Patrick Beale, University of Western Australia, Australia</td>
</tr>
</tbody>
</table>

Hall 2000

**LUNCH
EXHIBITION AND POSTER DISPLAY**
<table>
<thead>
<tr>
<th>HALL 206A</th>
<th>MATERIALS AND PRODUCTS</th>
<th>CROSS-LAMINATED TIMBER II</th>
<th>WCETE 1.2</th>
<th>MODERATOR</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Efficient Measurement of Elastic Constants of Cross Laminated Timber Using Modal Testing</td>
<td>Jianhui Zhou University of New Brunswick, Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Diagonal Compression Test on Cross-Laminated Timber Panels</td>
<td>Roberto Tomasi University of Trento, Italy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Bending Strength of Cross Laminated Timber Beams Loaded in Plane</td>
<td>Marcus Flaig Karlsruhe Institute of Technology, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Time-Dependent Behaviour of CLT</td>
<td>Ciprian Pirvu FPInnovations, Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Creep and Duration of Load Characteristics of Cross Laminated Timber</td>
<td>Shiro Nakajima Building Research Institute, Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HALL 206B</th>
<th>CONNECTIONS</th>
<th>CONNECTIONS PERFORMANCE I</th>
<th>WCETE 2.2</th>
<th>MODERATOR</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Fracture of Mortise Members Due to Changes in Peg Spacing in Timber Frame Joints</td>
<td>Daniel Hindman Virginia Tech, U.S.A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Splitting of Beams Caused by Multiple Connections Along the Beam Span</td>
<td>Ad Leijten TU Eindhoven, The Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Effects of Self-Tapping Screws as Reinforcements in Beam Supports on the Determination of the Global Modulus of Elasticity in Bending</td>
<td>Roland Maderebner University of Innsbruck, Austria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Highly Efficient Strengthening of Local Load Introduction Areas of Engineering Wood Structures Using Polymer Concrete Grouting</td>
<td>Wolfram Haedicke Bauhaus University Weimar, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Experimental and Numerical Analyses of Timber-Concrete Shear Connection</td>
<td>Abdelhamid Bouchair Université Blaise-Pascal, France</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HALL 204AB</th>
<th>STRUCTURAL SYSTEMS</th>
<th>COMPOSITE SYSTEMS II</th>
<th>WCETE 3.2</th>
<th>MODERATOR</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Development of Large-Scale Load-Bearing Timber-Glass Structural Elements</td>
<td>Erik Serrano Linnaeus University, Sweden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Experimental Investigation of the Bending Behaviour of Timber-to-Timber Composite-Section Beams</td>
<td>Sam Salem Lakehead University, Canada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Experimental Tests of Cross-Laminated Timber Floors for Timber-Steel Hybrid Structures</td>
<td>Cristiano Loss University of Trento, Italy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 - 15:20</td>
<td>Keel-Web Element - Novel Wood-Based Lightweight Element for Wide Spans</td>
<td>Simon Aicher MPA University of Stuttgart, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hall 205ABC

Buildings and Structures

Moderator: Dan Dolan, Washington State University, U.S.A.

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Earthquake Response Estimation of Wooden House with New Brace Fastener</td>
<td>Tomoki Furuta, Daichi Institute of Technology, Japan</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Enhancing Dynamic Performance of Lightweight Superstructures Using Supplementary Damping</td>
<td>Ebenezer Ussher, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Multi-Scale Modelling of Timber-Frame Structures Under Seismic Loading</td>
<td>Laurent Daudeville, Université Joseph-Fourier, France</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Numerical Analysis of Timber-Frame Structures with Infill Under Seismic Loading</td>
<td>Florent Vieux-Champagne, Université Joseph-Fourier, France</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Seismic Analysis of Three-Hinge Glulam Tudor Arches Using the FEMA P-695 Methodology</td>
<td>Finley Charney, Virginia Tech, U.S.A.</td>
</tr>
</tbody>
</table>

Hall 202

Serviceability/Fire Safety/Rehabilitation

Moderator: Andrea Frangi, ETH, Switzerland

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Modelling and Measurement of the Dynamic Performance of a Timber Concrete Composite Floor</td>
<td>Richard Hough, Arup, Australia</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Noise and Vibration Control of Light-Frame Wood Joist Floors Topped with Concrete</td>
<td>Lin Hu, FPInnovations, Canada</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Effect of End Support Conditions on the Vibrational Performance of Cross-Laminated Timber Floors</td>
<td>Saul Hernandez Maldonado, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Assessment of Timber Floor Vibration Performance: a Case Study in Italy</td>
<td>Daniele Casagrande, University of Trento, Italy</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Vibration Serviceability Design Analysis of Cross-Laminated-Timber Floor Systems</td>
<td>Ebenezer Ussher, University of New Brunswick, Canada</td>
</tr>
</tbody>
</table>

Hall 200A

Past, Present and Future

Moderator: David Moses, Moses Structural Engineers Inc., Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Swimming-Pool Building Made with X-Lam Panels</td>
<td>Alfredo Dias, University of Coimbra, Portugal</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Laminated Wooden Structure of the Gipsy Entertainment Centre in Moscow</td>
<td>Miljenko Haiman, University of Zagreb, Croatia</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Re-Building Trimble Navigation Offices Using a Damage-Limiting Seismic System</td>
<td>Andrew Brown, Opus International Consultants, New Zealand</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>CESM Soccer Center in Montreal - Timber Engineering Case Study. Part I</td>
<td>Louis-Philippe Poirier, SNC Lavalin, Canada</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>CESM Soccer Center in Montreal - Timber Engineering Case Study. Part II</td>
<td>Étienne Mondou, Nordic Engineered Wood, Canada</td>
</tr>
</tbody>
</table>

Hall 200BC

Coffee Break - Exhibition and Poster Display
Monday, August 11 - Afternoon

Hall 206A
Materials and Products
Cross-Laminated Timber III
Daniel Hindman, Virginia Tech, U.S.A.

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Effect of Growth Ring Orientation on the Rolling Shear Properties of Wooden Cross Layer Under Two-Plate Shear Test</td>
<td>Meng Gong, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Evaluation of the In-Plane Shear Strength of CLT</td>
<td>Sylvain Gagnon, FPInnovations, Canada</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Evaluating Rolling Shear Strength Properties of Cross-Laminated Timber by Torsional Shear Tests and Bending Tests</td>
<td>Minghao Li, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Duration-of-Load Effect on the Rolling Shear Strength of Cross-Laminated Timber: Duration-of-Load Tests and Damage Accumulation Model</td>
<td>Yuan Li, University of British Columbia, Canada</td>
</tr>
</tbody>
</table>

Hall 206B
Connections
Connections Performance II
Pouyan Zarnani, University of Auckland, New Zealand

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Use of Double-Threaded Self-Tapping Screws for In-Situ Repair of Cracked Timber Connections</td>
<td>Stephen Delahunty, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Experimental Study on Nail Connection Performance of Stand-Based Wood Composites</td>
<td>Hyung Suk Lim, University of British Columbia, Canada</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Withdrawal of Axially Loaded Connectors from Timber Elements - Theory and Validation</td>
<td>Haris Stamatopoulos, Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Investigation of Lumber Shear-Out in Tension Web Joints in Metal-Plate Connected Wood Trusses</td>
<td>Agron Gjinolli, Universal AET, U.S.A.</td>
</tr>
</tbody>
</table>

Hall 204AB
Structural Systems
Composite Systems III
Peggi Clouston, University of Massachusetts, U.S.A.

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Long-Term Experimental Investigation of Timber Composite Beams in Cyclic Humidity Conditions</td>
<td>Keith Crews, University of Technology, Sydney, Australia</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Long-Term Performance of Adhesively Bonded Timber-Concrete-Composites</td>
<td>Thomas Tannert, University of British Columbia, Canada</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Determination of Damage Equivalent Factors for the Fatigue Design of Timber-Concrete Composite Road Bridges with Notched Connections</td>
<td>Katrin Stephan, MPA University of Stuttgart, Germany</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Fatigue Design of Wood-Concrete-Composite Systems</td>
<td>Leander Bathon, Wiesbaden University of Applied Sciences, Germany</td>
</tr>
</tbody>
</table>
HALL 205ABC
BUILDINGS AND STRUCTURES
BUILDINGS (SEISMIC) II
John van de Lindt, Colorado State University, U.S.A.

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Seismic Risk Reduction for Soft-Story Woodframe Buildings: Test Results and Retrofit Recommendations from the NEES-Soft Project</td>
<td>John van de Lindt, Colorado State University, U.S.A.</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Performance-Based Seismic Retrofit Methodology of Soft-Story Woodframe Buildings with Full-Scale Shake Table Test Validation</td>
<td>Pouria Bahmani, Colorado State University, U.S.A.</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Observed Performance of Soft-Story Woodframe Building Retrofitted with CLT Rocking Walls</td>
<td>Asif Iqbal, Opus International Consultants, New Zealand</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Seismic Performance of Distributed Knee-Brace (DKB) System as a Retrofit for Soft-Story Wood-Frame Buildings</td>
<td>Mikhail Gershfeld, California State Polytech University, U.S.A.</td>
</tr>
</tbody>
</table>

HALL 202
SERVICEABILITY/FIRE SAFETY/REHABILITATION
SERVICEABILITY III
Erik Serrano, Linnæus University, Sweden

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Experimental Evaluation of Vibration Propagation Characteristics of a Timber House</td>
<td>Seiichiro Ukyo, Forestry and Forest Products Research Institute, Japan</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Model Calibration of Wooden Structure Assemblies - Using EMA and FEA</td>
<td>Åsa Bolmsvik, Linnæus University, Sweden</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross-Laminated Timber Buildings</td>
<td>Thomas Reynolds, University of Bath, UK</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>The Risk Basis for Height and Area Limits in North American Building Codes</td>
<td>Keith Calder, Sereca Fire Consulting Ltd., Canada</td>
</tr>
</tbody>
</table>

HALL 200A
PAST, PRESENT AND FUTURE
ARCHITECTURAL ACHIEVEMENTS III
Gary Williams, Timber Systems Limited, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Wooden Structures in Brasil: Present Situation and Perspectives</td>
<td>Helio Olga Souza Jr., Ita Construtora Ltda, Brazil</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>A Study on Historical Tall Wood Buildings in Canada</td>
<td>Kenneth Koo, FPInnovations, Canada</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Massive Wood Use in Institutional Buildings: Lessons Learned from 3 Recent Case Studies</td>
<td>Marie-Odile Marceau, McFarlane Marceau Architects, Canada</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Wood as a Core Strategy to Win an Architectural Competition</td>
<td>Normand Hudon, Coarchitecture, Canada</td>
</tr>
</tbody>
</table>

WCETE WELCOME RECEPTION
Musée de la Civilisation
WCtE/FPS Plenary Session

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 08:45</td>
<td>Housekeeping</td>
<td></td>
</tr>
<tr>
<td>08:45 - 09:45</td>
<td>Keynote 3. Wood Products and Construction; a Cornerstone of the Emerging Bio-Economy</td>
<td>Ian de la Roche, Canada</td>
</tr>
</tbody>
</table>

Coffee Break - Exhibition and Poster Display

Materials and Products

Grading and Quality Control

Moderator: Helen Griffin, Canadian Wood Council, Canada

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Three Dimensional Fibre Orientation Models for Wood Based on Laser Scanning Utilizing the Tracheid Effect</td>
<td>Anders Olsson, Linnaeus University, Sweden</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Strength Grading of Timber in Europe with Regard to Different Grading Methods</td>
<td>Peter Stapel, Technische Universität München, Germany</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Safety of Timber – An Analysis of Quality Control Options</td>
<td>Andriy Kovryga, Technische Universität München, Germany</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Structural (Performance) Class Potential for North America</td>
<td>Eric Jones, Canadian Wood Council, Canada</td>
</tr>
</tbody>
</table>

Innovative Connections I

Moderator: Hans Blass, Karlsruhe Institute of Technology, Germany

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Behaviour of Bond Lines in DVW Reinforced Timber Connections</td>
<td>Daniel Brandon, University of Bath, UK</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Joint with Large Diameter Fastener Constructed for Large Span Truss Girders</td>
<td>Miljenko Haiman, University of Zagreb, Croatia</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Novel Steel Tube Connection for Hybrid Systems</td>
<td>Johannes Schneider, University of British Columbia, Canada</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>High-Performance Timber Composite Joints for Spatial Round Wood Truss Structures</td>
<td>Kay-Uwe Schober, Mainz University of Applied Sciences, Germany</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Hybrid Joints with Casted Concrete for Timber Truss Girders</td>
<td>Peer Haller, Dresden University of Technology, Germany</td>
</tr>
</tbody>
</table>

Traditional Structures

Moderator: Richard Harris, University of Bath, UK

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Traditional Timber Frames</td>
<td>André Jorissen, Eindhoven Univ. of Technology, The Netherlands</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Sensitivity of Timber Hyperstatic Frames to the Stiffness of Step and Ridge Joints</td>
<td>Thierry Descamps, Université du Mons, Belgique</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Theoretical and Experimental Study of Traditional Japanese Cogged Joint</td>
<td>Keita Ogawa, Nagoya Université, Japan</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Seismic Resisting Mechanism and Formulations of Traditional Wooden Joints with Wedges</td>
<td>Hideaki Tanahashi, Ritsumeikan University, Japan</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Blockhaus System: Experimental Characterization of Corner Joints and Shear Walls</td>
<td>Roberto Tomasi, University of Trento, Italy</td>
</tr>
</tbody>
</table>
TUESDAY, AUGUST 12 - MORNING

HALL 205ABC
BUILDINGS AND STRUCTURES
TALL BUILDINGS I (CANADIAN GUIDE)
Erol Karacabeyli, FPInnovations, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40 – 11:00</td>
<td>Design and Construction of Tall Wood Buildings: A Guide for Fire-Safety Design</td>
<td>Andrew Harmsworth, GHL Consultants Ltd., Canada</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Design and Construction of Tall Wood Buildings: Framework for Quality Assurance of Glued Wood Components Fabricated on Site</td>
<td>Ciprian Pirvu, FPInnovations, Canada</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Design and Construction of Tall Wood Buildings: A Guide For Building Enclosure Design</td>
<td>Jieying Wang, FPInnovations, Canada</td>
</tr>
</tbody>
</table>

HALL 202
SERVICEABILITY/FIRE SAFETY/REHABILITATION

FIRE SAFETY I
Joseph Su, National Research Council, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Behaviour of Coated Wood Tested in a Cone Calorimeter</td>
<td>Josef Kögl, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Charring Rate of Intumescent Fire Protective Coated Norway Spruce</td>
<td>Josef Kögl, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Capacity Prediction of Bonded Beech Joints Under Normal and Elevated Temperatures</td>
<td>Till Valée, Fraunhofer IFAM, Germany</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Thermo-Mechanical Behavior of Timber in Shear: An Experimental Study</td>
<td>Abdelhamid Bouchair, Université Blaise-Pascal, France</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Fire Resistance of Primary Beam – Secondary Beam Connections in Timber Structures</td>
<td>Stefan Winter, Technische Universität München, Germany</td>
</tr>
</tbody>
</table>

HALL 200A
PAST, PRESENT AND FUTURE
DESIGN AND DESIGN TOOLS
Alfredo Dias, University of Coimbra, Portugal

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Design of Multi-Story Timber Building Using Multi-Objective Particle Swarm Optimization</td>
<td>Stephanie Armand Decker, Université de Bordeaux, France</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Okonflex IT-Tool For Configuring Wooden House Constructions</td>
<td>Anton Kraler, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>A Form Finding Method for Post Formed Timber Grid Shell Structures</td>
<td>Bernardino D’Amico, Edinburgh Napier University, UK</td>
</tr>
<tr>
<td>11:20 – 12:00</td>
<td>Beyond Endurance: Modular Prefab Timber Façades – Sustainable PlusEnergy Strategies for Wooden Cladding Systems in Multi-Storey Timber Buildings</td>
<td>Magnus Larsson, Ordinary Ltd., UK</td>
</tr>
</tbody>
</table>

HALL 2000
GUEST LECTURE

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 – 13:00</td>
<td>The Role of Forest Products in Sustainable Building for a Green Economy of the Future</td>
<td>Paola Deda, UNECE/FAO, Switzerland</td>
</tr>
<tr>
<td>Time</td>
<td>Title</td>
<td>Presenter, Affiliation, Country</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>The Behaviour of Plank (Tongue and Groove) Wood Decking Systems Under the Effects of Concentrated Load</td>
<td>Kevin Rocchi, University of Ottawa, Canada</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Composite Action Evaluation for Modern Pre-fabricated Wood I-Joist Floor Systems</td>
<td>Ned Waltz, Weyerhaeuser, U.S.A.</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Sandwich Panels with Holes</td>
<td>André Jorissen, Eindhoven UT, The Netherlands</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Effect of Round Holes in High Shear Zones of Laminated Veneer Lumber</td>
<td>Peggi Clouston, University of Massachusetts, U.S.A.</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Experimental Analysis of Slender Timber Columns of Pinus SPP</td>
<td>Jorge Daniel De Melo Moura, Londrina State University, Brazil</td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Load-Slip Behaviour of Timber-to-Concrete Connections Reinforced with Punched Metal Plate</td>
<td>El-Mahdi Meghlat, University of Tizi-Ouzou, Algeria</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Performance of an Innovative Roof to Top Plate Connection</td>
<td>Matthew Lovell, Rose-Hulman Institute of Technology, U.S.A.</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Evaluation on Dynamic Performance of Glulam Frame Structure Composed of Slotted Bolted Connection System</td>
<td>Kohei Komatsu, Kyoto University, Japan</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>An Innovative Connection System for CLT Structures: Experimental – Numerical Analysis</td>
<td>Albino Angeli, Rothoblaas, Italy</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>SHERPA-CLT-Connector for Cross-Laminated Timber (CLT) Elements</td>
<td>Anton Kraler, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Analysis of Engineered Design Provisions for Perforated Shear Walls</td>
<td>Daniel Lawless, DrJ Engineering, U.S.A.</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Semi Rigidity of Traditional Timber Floors – Modelling Aspects of Horizontal Diaphragms for Seismic Loading</td>
<td>Eric Fournely, Université Blaise-Pascal, France</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Distribution of Chord Forces in Large Panelized Wood Roof Diaphragms</td>
<td>Weichiang Pang, Clemson University, U.S.A.</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Simulation of the Lateral Drift of Multi-Storey Light Wood Frame Buildings Based on a Modified Macro-Element Model</td>
<td>Zhiyong Chen, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Design of Wood Frame and Podium Structures Using Linear Dynamic Analysis</td>
<td>Grant Newfield, RJC Consulting Engineers, Canada</td>
</tr>
</tbody>
</table>
BUILDINGS AND STRUCTURES

TALL BUILDINGS II

Robert Malczyk, Equilibrium Consulting Inc., Canada

### TIME	TITLE	PRESENTER, AFFILIATION, COUNTRY
13:40 – 14:00 | Wind-Induced Vibration of Mid- to High-Rise Wood Buildings – Is it an Issue? | Lin Hu, FPInnovations, Canada
14:00 – 14:20 | Nearly High-Rise Timber Buildings in Germany - Projects, Experiences and Further Development | Stefan Winter, Technische Universität München, Germany
14:20 – 14:40 | Integrating Cross-Laminated Timber Panels to Construct Buildings to 20 Levels | John Chapman, University of Auckland, New Zealand
14:40 – 15:00 | Wind-Induced Motions of “Treet” - A 14-Storey Timber Residential Building in Norway | Magne Bjertnæs, Sweco Norway, Norway
15:00 – 15:20 | Structural Design and Assembly of “Treet” - A 14-Storey Timber Residential Building in Norway | Rune B. Abrahamsen, Sweco Norway, Norway

SERVICEABILITY/FIRE SAFETY/REHABILITATION

FIRE SAFETY II

Christian Dagenaïs, FPInnovations, Canada

### TIME	TITLE	PRESENTER, AFFILIATION, COUNTRY
13:40 – 14:00 | Behaviour of Non-Metallic Shear Connections in Fire | Daniel Brandon, University of Bath, UK
14:00 – 14:20 | Fire Resistance of Metal-Plate-Connected Wood Trusses in the Floor Assemblies | Hisa Takeda, LGS Canada, Canada
14:40 – 15:00 | Shear Strength of LVL Box Beams in Fire Conditions | Andrew Buchanan, University of Canterbury, New Zealand
15:00 – 15:20 | Predicting the Fire Performance of Small, Exposed Wood Members | Jason Smart, American Wood Council, U.S.A.

PAST, PRESENT AND FUTURE

TRENDS IN WOOD CONSTRUCTION I

Wolfgang Winter, Vienna University of Technology, Austria

### TIME	TITLE	PRESENTER, AFFILIATION, COUNTRY
13:40 – 14:00 | Timber Structures in Brazil: Past, Present and Future | Carlito Calil Junior, University of São Paulo, Brazil
14:00 – 14:20 | Smart Cities in Wood, Strategies and Recommendations to Prepare the Timber Industry | Michael Flach, University of Innsbruck, Austria
14:20 – 14:40 | Strategies and Policies Implemented in Québec to Support the Increased Use of Wood in Non-Residential Construction | Louis Poliquin, cecobois, Canada
14:40 – 15:00 | Construction Value Pathways: Trends and Research Results | Paul Lansbergen, Forest Products Association of Canada, Canada

COFFEE BREAK - EXHIBITION AND POSTER DISPLAY
Hall 206A: Materials and Products

WCfE 1.6

Moderator:

Tomi Toratti, Finnish Construction Industries, Finland

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Characterizing Influence of Laminate Characteristics on Elastic Properties of Single-Layer of Cross-Laminated Timber</td>
<td>Jan Niederwestberg, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Load Carrying Behaviour of Naturally Grown Round Wood</td>
<td>Matthias Frese, Karlsruhe Institute of Technology, Germany</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Modeling Longitudinal Tensile Failure Load of Larix Gmelinii Finger-Jointed Lumber</td>
<td>Haiqing Ren, Chinese Academy of Forestry, China</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Investigations to the Compression Strength Perpendicular to the Grain of Spruce Wood Depending on the Loading Situation and Comparisons with Current Standards</td>
<td>Clemens Le Leve, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Investigation on Elements Presenting Cracks in Timber Structures</td>
<td>Steffen Franke, Bern University of Applied Sciences, Switzerland</td>
</tr>
</tbody>
</table>

Hall 206B: Connections

WCfE 2.6

Moderator:

Thomas Tannert, University of British Columbia, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Reliability Study for Performance of Timber Roof Connections Under Wind Forces</td>
<td>Geoff Boughton, TimberED Services, Australia</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Directional Dependency in an OSB Sheathing-to-Framing Mechanical Connection</td>
<td>Johan Vessby, Linnaeus University, Sweden</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Design of Multiple-Bolted Connections for Laminated Veneer Lumber</td>
<td>Borjen Yeh, APA - The Engineered Wood Association, U.S.A.</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Four Dowels in a Column Compared to a One Dowel Connection</td>
<td>Jan Siem, Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Mechanical Behavior of Bolted Glulam Beam-to-Column Connections</td>
<td>Xiaobin Song, Tongji University, China</td>
</tr>
</tbody>
</table>

Hall 204A: Structural Systems

WCfE 3.6

Moderator:

Ario Ceccotti, National Research Council, Italy

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Mechanically Jointed CLT Panels for Wall, Floor and Timber-Concrete Composite Structures</td>
<td>Petr Kuklik, Czech Technical University in Prague, Czech Republic</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Racking Resistance and Ductility of CLT Shear Walls Under Horizontal and Vertical Loads</td>
<td>Motoi Yasumura, Shizuoka University, Japan</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Lateral Loading Tests on CLT Shear Walls by Assembly of Narrow Panels and by a Large Panel with an Opening</td>
<td>Naohito Kawai, Kogakuin University, Japan</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Performance of Two-Storey CLT House Subjected to Lateral Loads</td>
<td>Marjan Popovski, FPInnovations, Canada</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Dynamic and Static Lateral Load Tests on Full-Sized 3-Storey CLT Construction for Seismic Design</td>
<td>Takahiro Tsuchimoto, Building Research Institute, Japan</td>
</tr>
</tbody>
</table>
Hall 205ABC
Buildings and Structures
Assessment / Upgrading
Kjell A. Malo, Norwegian University of Science and Technology, Norway

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Lightweight Deck Replacement Systems for Historic Covered Timber Bridges</td>
<td>James Wacker, USDA FS Forest Products Laboratory, U.S.A.</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Structural Properties Evaluation of Unique Boat House Using Oblique Nuki</td>
<td>Yasuhiro Hayashi, Kyoto University, Japan</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>The Proof Loading vs. Duration of Load Effects in Regard to the Reassessment of Timber Structures</td>
<td>Jochen Köhler, Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Lateral Load Tests of Houses Damaged in the Christchurch New Zealand Earthquakes</td>
<td>Hugh Morris, University of Auckland, New Zealand</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Wood Gives New Life to a Concrete Colossus</td>
<td>Ana Golmajer, CBD, Slovenia</td>
</tr>
</tbody>
</table>

Hall 202
Serviceability/Fire Safety/Rehabilitation
Fire Safety III
Andrew Buchanan, University of Canterbury, New Zealand

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Implementation of Fully Coupled Heat and Mass Transport Model to Determine the Behaviour of Timber Elements in Fire</td>
<td>Tomaz Hozjan, University of Ljubljana, Slovenia</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Fire Behaviour of Large Scale Wooden Roof Structures</td>
<td>Veronika Hofmann, Technische Universität München, Germany</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Fire Resistance of Light Timber Frame Wall and Floor Assemblies</td>
<td>Petr Kuklík, Czech Technical University in Prague, Czech Republic</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Full-Scale Fire Tests of 3-Storey Wooden School Building</td>
<td>Yuji Hasemi, Waseda University, Japan</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Development of a Canadian Fire-Resistance Design Method for Massive Wood Members</td>
<td>Christian Dagenais, FPInnovations, Canada</td>
</tr>
</tbody>
</table>

Hall 200A
Past, Present and Future
Trends in Wood Construction II
Carlito Calil Junior, University of São Paulo, Brazil

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Hybridised Australian Cross-Laminated Timber (ACLT) and Orientated Strand Board (OSB) Wall Panels – A Case Study</td>
<td>David Bylund, University of Western Australia, Australia</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Wood-Based Construction in Urban Context - Optimization Concepts for Increased Resource Efficiency</td>
<td>Wolfgang Winter, Vienna University of Technology, Austria</td>
</tr>
</tbody>
</table>
Hall 200A
WCTE/FPS Plenary Session

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 08:45</td>
<td>Housekeeping</td>
<td></td>
</tr>
</tbody>
</table>

Hall 200BC
Coffee Break - Exhibition and Poster Display

Hall 206A
Materials and Products

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Bamboo Reinforced Glulam Beams: An Alternative to Punched Metal Plate, GFRP and CFRP Reinforced Glulam Beams</td>
<td>César Echavarria, Universidad Nacional de Colombia, Colombia</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Composite Elements of Basalt Fibre Rods and Low-Grade Glulam</td>
<td>Gary Raftery, University of Auckland, New Zealand</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Flexural Response of Glued-Laminated (Glulam) Beams Subjected to Blast Loads</td>
<td>Daniel Lacroix, University of Ottawa, Canada</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Remaining Load-Bearing Behaviour of Glued-Laminated Timber Beams – Potential in Respect to Structural Robustness</td>
<td>Jochen Köhler, NTNU, Norway</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Identification of Weak Sections in Glulam Beams Using Calculated Stiffness Profiles Based on Lamination Surface Scanning</td>
<td>Jan Oscarsson, SP Technical Research Institute of Sweden, Sweden</td>
</tr>
</tbody>
</table>

Hall 206B
Connections

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Design Equations for Dowel Embedment Strength and Withdrawal Resistance for Threaded Fasteners in CLT</td>
<td>Shawn Kennedy, Université Laval, Canada</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Influencing Parameters on the Experimental Determination of the Withdrawal Capacity off Self-Tapping Screws</td>
<td>Andreas Ringhofer, Graz University of Technology, Austria</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Metal Work Used in Timber Engineering</td>
<td>Petr Sejkot, Czech Technical Univ. in Prague, Czech Republic</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Failure Modes In CLT Connections</td>
<td>Mohammad Mohammad, FPInnovations, Canada</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Shear Properties of Timber-to-Timber Joints with Large Size Self-Tapping Screws</td>
<td>Kenji Kobayashi, Shizuoka University, Japan</td>
</tr>
</tbody>
</table>

Hall 204AB
Structural Systems

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>An Analytical Estimation on Seismic Performance of 3 Story Construction with “Sugi” CLT Panels Depending on Connection Properties</td>
<td>Tatauya Miyake, Nihon System Sekkei Architects & Engineers, Japan</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Non-Linear Modelling of the Three and Seven Storey X-Lam Buildings Tested Within the SOFIE Project</td>
<td>Massimo Fragiacomo, University of Sassari, Italy</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Application of Translational Tuned-Mass Dampers on Seven Storey Building Tested Within the SOFIE Project</td>
<td>Massimo Fragiacomo, University of Sassari, Italy</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Structural Characterization of Multi-Storey Buildings with CLT Cores</td>
<td>Davide Trutalli, University of Padua, Italy</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Progress on the Development of Seismic Resilient Tall CLT Buildings in the Pacific Northwest</td>
<td>Shiling Pei, Colorado School of Mines, U.S.A.</td>
</tr>
</tbody>
</table>
BUILDINGS AND STRUCTURES

Moderator: Marjan Popovski, FPinnovations, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Design of Timber Structures in a Digital World</td>
<td>Kolbein Bell Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Partial Factors Versus Design Values</td>
<td>Tuomo Poutanen TU Tampere, Finland</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>An Approach for Estimating Seismic Force Modification Factor of Hybrid Building Systems</td>
<td>Zhiyong Chen University of New Brunswick, Canada</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Specific Design of Light Timber Framed Multi-Storey Buildings for New Zealand</td>
<td>David Carradine BRANZ, New Zealand</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Design of a 6-Storey Light-Frame Timber Building in Québec City</td>
<td>François Chaurette cecobois, Canada</td>
</tr>
</tbody>
</table>

SERVICEABILITY/FIRE SAFETY/REHABILITATION

Moderator: Stefan Winter, München Technische Universität, Germany

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:40 – 11:00</td>
<td>Reliability of Sprinkler Systems During and After a Seismic Event and Application to Tall Wood Buildings</td>
<td>Andrew Harmsworth GHL Consultants Ltd., Canada</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Fire Risk Evaluation Methods for Wood-Based Construction in Urban Context</td>
<td>Wolfgang Winter Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Contemporary Mid-Rise Timber Buildings in Japan, 2013</td>
<td>Mikio Koshihara University of Tokyo, Japan</td>
</tr>
</tbody>
</table>

PAST, PRESENT AND FUTURE

Moderator: Caroline Frenette, cecobois, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 – 10:40</td>
<td>Modeling of the Hygroscopic Behavior of Coated Wood Panels Submitted to Accelerated Aging</td>
<td>Jérôme Dopeux Plateforme technologique Bois-Construction du Limousin, France</td>
</tr>
<tr>
<td>10:40 – 11:00</td>
<td>Prediction Models of the Water Vapor Diffusion Behavior of Wood-Based Panels</td>
<td>Norbert Ruether Fraunhofer Institute for Wood Research, Germany</td>
</tr>
<tr>
<td>11:00 – 11:20</td>
<td>Sustainable Wooden Envelope for Subtropical Regions – The Realization and Validation in Japan</td>
<td>Yutaka Goto TU Chalmers, Sweden</td>
</tr>
<tr>
<td>11:20 – 11:40</td>
<td>Cross-Laminated Timber: Towards a Consistent Structural Insulated Panel for Passive Buildings in Belgium</td>
<td>Vladimir Rodríguez Trujillo Calatan Institute of Wood, Spain</td>
</tr>
<tr>
<td>11:40 – 12:00</td>
<td>Multi-Storey Residential Buildings in CLT – Interdisciplinary Principles of Design and Construction</td>
<td>Andreas Ringhofer Graz University of Technology, Austria</td>
</tr>
</tbody>
</table>
HALL 206A MATERIALS AND PRODUCTS

MODERATOR
David Kretschmann, USDA FS Forest Products Laboratory, U.S.A.

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Analysis of Finger Joints from Beech Wood</td>
<td>Bettina Franke, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Experimental Study of Multi-Layered Beams Made of Beech Timber Glued with Different Adhesives</td>
<td>Marc Oudjene, Université de Lorraine, France</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Structural Light Weight Construction Panel Based on Beech Wood</td>
<td>Martin Lehmann, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Hardwood Glulams - Emerging Timber Products of Superior Mechanical Properties</td>
<td>Zachary Christian, MPA University of Stuttgart, Germany</td>
</tr>
</tbody>
</table>

HALL 206B CONNECTIONS

MODERATOR
Mohammad Mohammad, FPInnovations, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Mechanical Behaviour of Dovetail Connections for Cross-Laminated Timber Wall Elements</td>
<td>Josef Kögl, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>High Performance Cross-Laminated Timber Shear Connection with Self-Tapping Screw Assemblies</td>
<td>Ilana Danzig, Equilibrium Consulting Inc, Canada</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Screwed Joints in Cross-Laminated Timber Structures</td>
<td>Georg Flatscher, Graz University of Technology, Austria</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Pull-Out Strength Properties of Lagscrewbolt Connection in Cross-Laminated Timber</td>
<td>Takuro Mori, University of British Columbia, Canada</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Numerical Simulation for the Seismic Behaviour of Mid-Rise CLT Shear Walls with Coupling Beams</td>
<td>Jingjing Liu, Kyoto University, Japan</td>
</tr>
</tbody>
</table>

HALL 204AB STRUCTURAL SYSTEMS

MODERATOR
Stefano Pampanin, University of Canterbury, New Zealand

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Design and Testing of Post-Tensioned Timber Wall Systems</td>
<td>Francesco Sarti, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Seismic Design of Floor Diaphragms in Post-Tensioned Timber Buildings</td>
<td>Daniel Moroder, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Timber Core-Walls for Lateral Load Resistance of Multi-Storey Timber Buildings</td>
<td>Andrew Dunbar, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>The Interaction of Slip-Friction Connectors and Shear Key in a Rocking Timber Shear Wall with Elasto-Plastic Behaviour</td>
<td>Pierre Quenneville, University of Auckland, New Zealand</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Damage Avoidance Design of Timber Structures Using High-Force-to-Volume Damping Devices</td>
<td>Massimo Fragiaccomo, University of Sassari, Italy</td>
</tr>
<tr>
<td>TIME</td>
<td>TITLE</td>
<td>PRESENTER, AFFILIATION, COUNTRY</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13:40 – 14:00</td>
<td>Shear Behavior of On-Site Timber Stress-Laminated Box-Beam Bridges</td>
<td>Humihiko Gotou, Akita University, Japan</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>A Review of Design Criteria for Vibrational Response of Pedestrian Timber Bridges</td>
<td>Anna Ostrycharczyk, Norwegian University of Science and Technology, Norway</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Block Glued Glulam - Bridges, Beams and Arches</td>
<td>Simon Aicher, MPA University of Stuttgart, Germany</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Design and Construction of a 160-metre-long Wood Bridge in Mistissini, Québec</td>
<td>Grégoire Richard, Dessau, Canada</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Service Life Assessment of Timber Highway Bridges in USA Climate Zones</td>
<td>James Wacker, USDA FS Forest Products Laboratory, U.S.A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Numerical Analysis of a Church in Venice for the Study of the Influence of Timber Piling Degradation in the Foundations on the Structure in Elevation</td>
<td>Giulia Bettiol, University of Padua, Italy</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Use of Wood for Countermeasures Against Liquefaction</td>
<td>Atsurnori Numata, Tobishima Corporation, Japan</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Seismic Performance of a Wooden Temple Inferred from Earthquake Observation and Seismic Diagnosis</td>
<td>Toshiaki Sato, Tokyo University of Science, Japan</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Seismic Retrofit of Soft-Storey Timber Buildings with Energy Dissipating Floor-Wall Connections</td>
<td>Asif Iqbal, Opus International Consultants, New Zealand</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Seismic Shaking Table Testing of a Reinforced Concrete Frame with Masonry Infill Strengthened with Cross-Laminated Timber Panels</td>
<td>Iztok Sustersic, CBD, Slovenia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:40 – 14:00</td>
<td>Development of Modular Wooden Buildings with Focus on the Indoor Environmental Quality</td>
<td>Michael Flach, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>14:00 – 14:20</td>
<td>Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations</td>
<td>Rick Bergman, USDA FS Forest Products Laboratory, U.S.A.</td>
</tr>
<tr>
<td>14:20 – 14:40</td>
<td>Wood-Based Building Products Environmental Assessment According to the Environmental Product Declaration Standard</td>
<td>Lauri Linkosalmi, Aalto University, Finland</td>
</tr>
<tr>
<td>14:40 – 15:00</td>
<td>Carbon Aspects Promote Building with Wood</td>
<td>Arno Fruehwald, University of Hamburg, Germany</td>
</tr>
<tr>
<td>15:00 – 15:20</td>
<td>Integration of Québec Wood Industry Data in the Québec LCI Database: How Can the Industry Directly Benefit?</td>
<td>Hugues Imbeault-Tétreault, CIRAIG, Canada</td>
</tr>
</tbody>
</table>
HALL 206A

WCTE 1.9

MODERATOR

HAJIQING REN, CHINESE ACADEMY OF FORESTRY, CHINA

TIME	**TITLE**	**PRESENTER, AFFILIATION, COUNTRY**
15:40 – 16:00 | Understanding the Structural Properties of Moso Bamboo to Engineer Sustainable Structural Bamboo Products | Patrick Dixon, Massachusetts Institute of Technology, U.S.A.
16:00 – 16:20 | Experimental Behaviour of Structural Size Glued Laminated Guadua Bamboo Members | Juan Correal, University of Los Andes, Colombia
16:20 – 16:40 | Development of Engineered Bamboo | Keith Crews, University of Technology, Sidney, Australia
16:40 – 17:00 | Evaluation of the Mechanical Properties of Cross-Laminated Bamboo Panels by Digital Image Correlation and Finite Element Modelling | Hector Archila, University of Bath, UK
17:00 – 17:20 | The Potential Use of Timber from Palm Trees for Building Purposes | Leila Fathi, University of Hamburg, Germany

HALL 206B

WCTE 2.9

MODERATOR

ADRIAN LEIJTEN, EINDHOVEN UNIVERSITY OF TECHNOLOGY, THE NETHERLANDS

TIME	**TITLE**	**PRESENTER, AFFILIATION, COUNTRY**
15:40 – 16:00 | Post-Tensioned Timber Connections. Experimental Analysis of the Long-Term Behavior | Flavio Wanninger, ETH Zurich, Switzerland
16:00 – 16:20 | Influence of Moisture Content on Timber Elements with Dowel-Type Fastener | Jérôme Dopeux, Plateforme technologique Bois-Construction du Limousin, France
16:20 – 16:40 | Fatigue Design of Adhesive Connections Using Perforated Steel Plates | Leander Bathon, Wiesbaden University of Applied Sciences, Germany
16:40 – 17:00 | Effects of Changes in Moisture Content in Reinforced Glulam Beams | Philipp Dietsch, Technische Universität München, Germany
17:00 – 17:20 | Finite Element Models of Effects of Moisture on Bolt Embedment and Connection Properties of Glulam | Henry Kiwelu, University of Dar es Salaam, Tanzania

HALL 204AB

WCTE 3.9

MODERATOR

WEICHIANG PANG, CLEMSON UNIVERSITY, U.S.A.

TIME	**TITLE**	**PRESENTER, AFFILIATION, COUNTRY**
15:40 – 16:00 | Performance of Shear Walls with Wood Screws Under Reversed Cyclic Loading | Chun Ni, FPInnovations, Canada
16:00 – 16:20 | Structural Performance of Shearwalls Studded with Small-diameter Round Timber Under Cyclic Lateral Load | Enchun Zhu, Harbin Institute of Technology, China
16:20 – 16:40 | Research and Application of Timber-Steel Hybrid Structures | Minjuan He, Tongji University, China
16:40 – 17:00 | Response of Low-Cost Timber Frame Walls with Caña Brava and Mortar Subjected to Earthquake Loading | Christian Málaga-Chuquitaype, Imperial College of London, UK
17:00 – 17:20 | Evaluation of Restoring Force Characteristics of Mud-walls Considering Effect of Wall-Height for Seismic Structural Design | Hiroyuki Nakaji, Tottori University of Environmental Studies, Japan
BUILDINGS AND STRUCTURES

Hybrid Building Systems

Moderator: Massimo Fragiacomo, University of Sassari, Italy

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Nonlinear Dynamic Analyses of Novel Timber-Steel Hybrid System</td>
<td>Michael Fairhurst, University of British Columbia, Canada</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Seismic Detailing of Post Tensioned Timber Frames</td>
<td>Thomas Armstrong, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Non-Linear Numerical Modelling of a Post-Tensioned Timber Frame Building with Hysteretic Energy Dissipation</td>
<td>Tobias Smith, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Shaking Table Testing of a Multi-Storey Post-Tensioned Glulam Building</td>
<td>Stefano Pampanin, University of Canterbury, New Zealand</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Lateral Behavior of Post-Tensioned Cross-Laminated Timber Walls Using Finite Element Analysis</td>
<td>Zhouyan Xia, Technische Universität München, Austria</td>
</tr>
</tbody>
</table>

SERVICEABILITY/FIRE SAFETY/REHABILITATION

Rehabilitation II

Moderator: Roberto Tomasi, University of Trento, Italy

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Assessment, Reinforcement and Monitoring of Timber Structures: FPS Cost Action FP1101</td>
<td>Jorge M. Branco, University of Minho, Portugal</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Wood Buildings and Fire in Historical Urban Context, in Edo (Former Tokyo) and Vienna</td>
<td>Atsuko Tani, Vienna University of Technology, Austria</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Damage Behaviour of Taiwanese Traditional Dieh-Dou Timber Frame</td>
<td>Sok Yee Yeo, National Cheng Kung University, Taiwan</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Structural Study for Conservation of Group of Traditional Timber Houses in South Nias, Indonesia</td>
<td>Yuka Yasui, Mie University, Japan</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>Load Carrying Capacity of Large Mortise and Tenon Joints in Wooden Mitre Gates</td>
<td>Wolfgang Gard, Delft University of Technology, The Netherlands</td>
</tr>
</tbody>
</table>

PAST, PRESENT AND FUTURE

Environment and LCA II

Moderator: Dominique Gauzin-Müller, Ekologik/EK, Germany

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40 – 16:00</td>
<td>Environmental Properties of Timber Buildings in Life Cycle - From European Viewpoint</td>
<td>Annette Hafner, Technische Universität München, Germany</td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Environmental Performance of Innovative Wood Building Systems Using Life-Cycle Assessment</td>
<td>Caroline Frenette, cecobois, Canada</td>
</tr>
<tr>
<td>16:20 – 16:40</td>
<td>Potential Energy Saving by Using Wooden Panel in Bathrooms</td>
<td>Kristine Nore, Norwegian Institute of Wood Technology, Norway</td>
</tr>
<tr>
<td>16:40 – 17:00</td>
<td>Potential Analysis of the Energy and Climate Performance of Wood-Concrete Hybrid Building Structures</td>
<td>Jeno Balogh, Metropolitan State University of Denver, U.S.A.</td>
</tr>
<tr>
<td>17:00 – 17:20</td>
<td>A Comparison of the Embodied Energy and Embodied Carbon of a Timber Visitor Centre in Ireland with its Concrete Equivalent</td>
<td>Desmond Dolan, National University of Ireland, Ireland</td>
</tr>
</tbody>
</table>
Hall 206A - Materials and Products (NEW STRUCTURAL PRODUCTS)

Moderator: Simon Aicher, MPA University of Stuttgart, Germany

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Tectonic Strategies for Using Fast-Growing, Low-Grade Softwoods for Engineered Wood Products</td>
<td>Patrick Fleming, University of Cambridge, UK</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>Structural Performance of Accoya® Wood Under Service Class 3 Conditions</td>
<td>Matthew Roberts, Accsys Technologies, U.S.A.</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>High-Tech Timber Beam® – A High-Performance Hybrid Beam System Made of Composites and Timber</td>
<td>Martin Kaestner, Bauhaus-University Weimar, Germany</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Application of Moulded Wooden Tubes as Structural Elements</td>
<td>Peer Haller, Dresden University of Technology, Germany</td>
</tr>
</tbody>
</table>

Hall 206B - Connections

Moderator: Abdelhamid Bouchair, Université Blaise-Pascal, France

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Manufacturing Gluing-In Rods Under Low Temperatures Using Induction Heating</td>
<td>Till Vallée, Fraunhofer Institute of Wood Research, Germany</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>Connection for Round Wood Timber Members Using Multiple Glued-In Rods</td>
<td>Alfredo Dias, University of Coimbra, Portugal</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>Timber Joints with Glued-In FRP Rods</td>
<td>Thomas Tannert, University of British Columbia, Canada</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Advancement of Glued-In Rods Using Polymer Concrete as Composite Material</td>
<td>Kay-Uwe Schober, Mainz University of Applied Sciences, Germany</td>
</tr>
</tbody>
</table>

Hall 204AB - Structural Systems

Moderator: Ian Smith, University of New Brunswick, Canada

<table>
<thead>
<tr>
<th>Time</th>
<th>Title</th>
<th>Presenter, Affiliation, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Informed Design from FEM Analysis of Wood Shoring Used in Urban Search and Rescue</td>
<td>Dan Wheat, University of Texas, U.S.A.</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>Equivalent Viscous Damping for CLT Infilled Steel Moment Frame Structures</td>
<td>Matiyas Bezabeh, University of British Columbia, Canada</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>Wood Laminates for Utility Scale Wind Turbine Blades: Numerical Evaluation of the Shear Strength of an Angle-Ply Wood Laminate</td>
<td>Rachel Koh, University of Massachusetts, U.S.A.</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>In-Plane Stiffness of Cross-Laminated Timber Floors</td>
<td>Sepideh Ashtari, University of British Columbia, Canada</td>
</tr>
</tbody>
</table>
HALL 205ABC
BUILDINGS AND STRUCTURES
Moderator: Ying Hei Chui, University of New Brunswick, Canada

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Effect of Non-Structural Components on the Natural Period of Wood Light-Frame Buildings</td>
<td>Ghazanfarah Hafeez, University of Ottawa, Canada</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>Seismic Performance of Mid-Rise Light Wood Frame Building Connected to a Stiff Core</td>
<td>Lina Zhou, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>Seismic Analysis of Hybrid Multi-Story Light Wood Frames in China</td>
<td>Suyi Guo, Tongji University, China</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Numerical Model for Hybrid Simulation of a Three-Story Wood-Frame Building</td>
<td>Weichiang Pang, Clemson University, U.S.A.</td>
</tr>
</tbody>
</table>

HALL 202
SERVICEABILITY/FIRE SAFETY/REHABILITATION
Moderator: Joseph Loferski, Virginia Tech, U.S.A.

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Biodeterioration and Structural Analysis of Timber Roofs of an Historical Building in São Paulo, Brazil</td>
<td>Takashi Yojo, Institute for Technological Research, Brazil</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>User Perspective on the Wearing of Wooden Floors – Cases Viikki Church and Kuokkala Church</td>
<td>Jonna Silvo, Aalto University, Finland</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>The Effect of Drying Condition on Post Flooding Mechanical Properties of Timber Shear Walls</td>
<td>Alistair Bradley, University of Bath, UK</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Influence of Material Deterioration on Strength Properties of Hydraulic Timber Structures</td>
<td>Wolfgang Gard, Delft University of Technology, The Netherlands</td>
</tr>
</tbody>
</table>

HALL 200A
PAST, PRESENT AND FUTURE
Moderator: Petr Kuklik, Czech Technical University in Prague, Czech Republic

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 – 09:20</td>
<td>Development of a Wooden Adaptive Architectural System: A Design-Build Approach</td>
<td>Cédric Dumontier, Université Laval, Canada</td>
</tr>
<tr>
<td>09:20 – 09:40</td>
<td>Timber in Architectural Education – A Case Study in ‘Learn By Making’</td>
<td>David Bylund, University of Western Australia, Australia</td>
</tr>
<tr>
<td>09:40 – 10:00</td>
<td>Expert Competence for Sustainable Timber Building – A Master Program in Close Cooperation Between Industry and Academia</td>
<td>Marie Johansson, Linnaeus University, Sweden</td>
</tr>
<tr>
<td>10:00 – 10:20</td>
<td>Teaching Timber Engineering</td>
<td>Richard Harris, University of Bath, UK</td>
</tr>
</tbody>
</table>

HALL 200BC
COFFEE BREAK - EXHIBITION AND POSTER DISPLAY

HALL 200A
WCTE PLENARY AND CLOSING SESSION

<table>
<thead>
<tr>
<th>TIME</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:40 – 12:30</td>
<td>WCTE Closing Session</td>
<td></td>
</tr>
</tbody>
</table>
TRACK 1 MATERIALS AND PRODUCTS

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS059</td>
<td>Full Field Measurements on Small Notched Beams by Grid Method - Application to Lattice Elements</td>
<td>Eric Fournely, Université Blaise-Pascale, France</td>
</tr>
<tr>
<td>ABS102</td>
<td>A Study on the Translucency Seismic Retrofitting Wall with the Punching Metal Sheet</td>
<td>Katsuhiko Kohara, Gifu Academy, Japan</td>
</tr>
<tr>
<td>ABS103</td>
<td>A Study on Visco-Elastic Damper Effect for Retrofitting of the Large Timber Structure</td>
<td>Katsuhiko Kohara, Gifu Academy, Japan</td>
</tr>
<tr>
<td>ABS105</td>
<td>Determination of the Modulus of Elasticity for Various Wood Species on the Basis of the Measurement of Free Vibration Parameters</td>
<td>Barbara Misztal, Wroclaw University of Technology, Poland</td>
</tr>
<tr>
<td>ABS114</td>
<td>Damage Identification of Member in Ancient Timber Structure Based on Modal Strain Energy Method</td>
<td>Xueliang Wang, Wuhan University of Technology, China</td>
</tr>
<tr>
<td>ABS148</td>
<td>Strain-Softening Behavior of Wood Estimated in Single-Edge Notched Bending Test</td>
<td>Koji Murata, Tokyo University, Japan</td>
</tr>
<tr>
<td>ABS172</td>
<td>Analysis of the Penetration of Adhesives at Finger-Joints in Beech Wood</td>
<td>Bettina Franke, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>ABS175</td>
<td>Investigation of Eucalyptus Globulus Wood for the Use as an Engineered Material</td>
<td>Steffen Franke, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>ABS194</td>
<td>End Reinforcement of Wood Member Using Shortcut Carbon Fibers</td>
<td>Meng Gong, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>ABS206</td>
<td>Mechanical Characteristics of Historical Beams of Picea Abies Wood. Assessment by Static Bending</td>
<td>Javier-Ramón Sotomayor-Castellanos, Universidad Michoacana de San Nicolás de Hidalgo, Mexico</td>
</tr>
<tr>
<td>ABS247</td>
<td>Finite Element Analysis of Uniformly Partial Compression Tests of Wood</td>
<td>Shuhei Mitsui, Kure National College of Technology, Japan</td>
</tr>
<tr>
<td>ABS257</td>
<td>Glulam Reinforced Using Plates of Distinctive Lengths – Experimentation and Modelling</td>
<td>Gary Raftery, University of Auckland, New Zealand</td>
</tr>
<tr>
<td>ABS309</td>
<td>Timber Engineering and Conservation of Endangered Forest Species from the Congo Basin: Contribution of Multivariate Analysis</td>
<td>Myriam Chaplain, Université de Bordeaux, France</td>
</tr>
<tr>
<td>ABS311</td>
<td>An Enhanced Beam Model for Glued Laminated Structures that Takes Moisture, Mechano-Sorption and Time Effects Into Account</td>
<td>Sigurdur Ormarsson, Technical University of Denmark, Denmark</td>
</tr>
<tr>
<td>ABS327</td>
<td>Study on Seismic Performance Evaluation of Mud Wall Considering Regional Characteristics of Wall Clay</td>
<td>Naoki Utsunomiya, Shikoku Polytechnic College, Japan</td>
</tr>
<tr>
<td>ABS346</td>
<td>Results of Penetration Tests Performed on GLT Beams</td>
<td>Lenka Melznerova, Czech Technical University in Prague, Czech Republic</td>
</tr>
<tr>
<td>ABS423</td>
<td>Lateral Torsional Buckling of Wood Beams: FEA-Modelling and Sensitivity Analysis</td>
<td>Ghasan Doudak, University of Ottawa, Canada</td>
</tr>
<tr>
<td>ABS433</td>
<td>Embedding Behaviour of Cross-Laminated Timber Panels Manufactured from Sugi</td>
<td>Nobuyoshi Yamaguchi, Building Research Institute, Japan</td>
</tr>
<tr>
<td>ABS450</td>
<td>Influence of Boundary Conditions in Modal Testing on Evaluated Elastic Properties of Timber Panels</td>
<td>Jan Niederwestberg, University of New Brunswick, Canada</td>
</tr>
<tr>
<td>ABS469</td>
<td>Estimation on Bearing Capacity of Shelf Made From Plywood Subjected to Distributed Load</td>
<td>Manabu Matsushima, Kagawa University, Japan</td>
</tr>
<tr>
<td>ABS476</td>
<td>Characterization of Eucalyptus Sp. Ties for Use in Brazilian Railways</td>
<td>Felipe Icimoto, University of São Paulo, Brazil</td>
</tr>
<tr>
<td>ABS484</td>
<td>Numerical Simulation of Swelling and Shrinking Behaviour of Roundwood Trunks</td>
<td>Josef Kögl, University of Innsbruck, Austria</td>
</tr>
<tr>
<td>ABS489</td>
<td>Bending Performance and Creep of Flat Squares Without Pith Sawn Up from Sugi Large Diameter Logs</td>
<td>Shiro Aratake, Miyazaki Prefectural WUR Center, Japan</td>
</tr>
<tr>
<td>ABS499</td>
<td>Bending Strength and Finite Element Analysis of Southern Pine Composite Lumber</td>
<td>Zhuo Yang, Michigan State University, U.S.A.</td>
</tr>
</tbody>
</table>
TRACK 1 MATERIALS AND PRODUCTS (CONT'ED)

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
</table>
| ABS504 | Wood Construction Under Cold Climate | Xiaodong (Alice) Wang
Luleå University of Technology, Sweden |
| ABS513 | Effect of Heat Treatment on Physical Properties and Wood Surface of Brazilian Eucalyptus Grandis Used for Structures and Furniture | Alexandre Carvalho
Rural Federal University of Rio de Janeiro, Brazil |
| ABS560 | Development of a Portable Hardness Tester for Wood Using Displacement Transducer | Adriano Ballarin
São Paulo State University, Brazil |
| ABS568 | Applicability of Various Wood Species in Glued Laminated Timber - Parameter Study on Delamination Resistance and Shear Strength | Stefan Winter
München Technische Universität, Germany |
| ABS597 | In-Plane Shear Test of Full Scale Cross-Laminated Timber Panels | Yasuhiro Araki
Building Research Institute, Japan |
| ABS606 | An Experimental Study on Resistant Mechanism of Thick Plywood Subjected to Lateral Loadings | Akiko Ohtsuka
Tokyo University of Science, Japan |
| ABS616 | Mechanical and Physical Characterization of Composite Bamboo-Guadua Products: Plastiguadua | Hector Archila
University of Bath, UK |
| ABS617 | Influence of Micro Structured Surface on the Bond Quality of Hardwood | Martin Lehmann
Bern University of Applied Sciences, Switzerland |
| ABS645 | Properties of Strength and Elasticity of Structural Elements of Round Timber of Amaru for Use in Civil Construction | Felipe Icimoto
University of São Paulo, Brazil |
| ABS685 | X-Ray CT Technique for Investigating Inner Density Distribution of Historic Wooden Properties | Chul-Ki Kim
Seoul National University, Korea |
| ABS705 | Properties of Clear Wood and Structural Timber of Pseudotsuga Menziesii from the Mediterranean Spain | Eduard Correal
Institut Català de la Fusta, Spain |

TRACK 2 CONNECTIONS

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
</table>
| ABS048 | Modelling the Effect of Grain Orientation on the Lag Screw Withdrawal Load for Tropical Hardwoods | Cláudio Del Menezzi
University of Brasilia, Brazil |
| ABS060 | Self Tapping Screws Without Pre-Drilling for Brazilian Reforestation Species | Carlito Calil Neto
University of São Paulo, Brazil |
| ABS082 | Study on Single Shear Strength of Nailed Joints Subjected to Grain Direction | Kiyotaka Terui
Polus R & D Center of Life-Style, Japan |
| ABS094 | Study on Timber Framed Joints Using Drift Pins and UV-Hardening FRP | Shinya Matsumoto
Kinki University, Japan |
| ABS140 | Study on Compressive Strain of CLT Wall Bottom Under the Extreme Vertical Load | Satoshi Donishii
Nippon Institute of Technology, Japan |
| ABS146 | Experimental Study and Finite Element Analysis on Seismic Performance of Wooden Mortise-Tenon Joints Before and After Reinforcement | Lu Weidong
Nanjing University of Technology., China |
| ABS147 | Bond Behavior of Glued-In Timber Joint with Deformed Bar Epoxied in Glulam | Zhibin Ling
Southeast University, China |
| ABS168 | Study on Prevention for Buckling of Combined Pillar with Fiber Materials or Screws | Hideyuki Nasu
Nippon Institute of Technology, Japan |
| ABS208 | Edge Connections for CLT Plates: In-Plane Shear Tests on Half-Lapped and Single-Spline Joints | Masoud Sadeghi
University of New Brunswick, Canada |
| ABS250 | An Experimental Study on the Ductility of Bolted Connections Loaded Perpendicular to the Grain | Wataru Kambe
Kanto Gakuin University, Japan |
Oita University, Japan |
| ABS337 | Adhesively Bonded Timber Joints — To Which Extent Do Defects Matter? | Till Vallée
Fraunhofer Institute for Wood Research, Germany |
TRACK 2: CONNECTIONS (CONT'D)

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS345</td>
<td>Evaluation on the Shear Performance of Wood-Concrete Composite Anchored with Steel Rebar</td>
<td>Sang-Joon Lee, Korea Forest Research Institute, Korea</td>
</tr>
<tr>
<td>ABS359</td>
<td>Pull-Out Strength of Glued-In Rod Joint From LVL</td>
<td>Kazutoshi Ito, Oita University, Japan</td>
</tr>
<tr>
<td>ABS375</td>
<td>Evaluate Bearing Stress of Glulam Using Digital Image Correlation</td>
<td>Gi Young Jeong, Chonnam National University, Korea</td>
</tr>
<tr>
<td>ABS400</td>
<td>Wood-Based Structural-Use Panel Diaphragms and Shear Walls: Problems Due to Moisture Exposure and Recommended Repairs</td>
<td>Agron Gjinolli, Universal AET, U.S.A.</td>
</tr>
<tr>
<td>ABS478</td>
<td>Effect of Wood Decay on Shear Resistance of Dowel-Type Joints with Steel Side Plates</td>
<td>Kei Sawata, Hokkaido University, Japan</td>
</tr>
<tr>
<td>ABS492</td>
<td>Development of Continuous Composite Joints on the Basis of Polymer Mortar with Matched Properties</td>
<td>Martin Kaestner, Bauhaus-University Weimar, Germany</td>
</tr>
<tr>
<td>ABS502</td>
<td>Reinforcement of Shear Failure with Long Screw in Moment-Resisting Joint</td>
<td>Makoto Nakatani, Miyazaki Prefectural Research Institute, Japan</td>
</tr>
<tr>
<td>ABS526</td>
<td>Exposure Test of Surface-Treated Steel Plates on Preservative-Treated Woods</td>
<td>Hiroki Ishiyama, Chubu University, Japan</td>
</tr>
<tr>
<td>ABS578</td>
<td>Experimental Study of Pull-Out Strength of a Tenon and Mortise Joint</td>
<td>Atsushi Tabuchi, Kyoto Prefectural University, Japan</td>
</tr>
<tr>
<td>ABS583</td>
<td>A Study on Failure Mode and Strength Estimation of Timber Joint Using Lagscrewbolts and Driftpins</td>
<td>Hiroyasu Sakata, Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS586</td>
<td>Development of CLT Shear Frame Using Metal Plate Insert Connections</td>
<td>Akihisa Kitamori, Kyoto University, Japan</td>
</tr>
<tr>
<td>ABS666</td>
<td>The Quick Connect Moment Joint for Portal Frame Buildings: Case Study and Discussion of Design Challenges and Construction Detailing</td>
<td>Felix Scheibmaier, University of Auckland, New Zealand</td>
</tr>
<tr>
<td>ABS679</td>
<td>Design Equation For Withdrawal Resistance of Threaded Fasteners in the Canadian Timber Design Code</td>
<td>Shawn Kennedy, Université Laval, Canada</td>
</tr>
<tr>
<td>ABS696</td>
<td>Study on Wood - Steel Plate Connection with Epoxy Resin and Self Drilling Tapping Screws</td>
<td>Ryota Haba, FCBA, France</td>
</tr>
<tr>
<td>ABS716</td>
<td>Design Equations for Embedment Strength of Wood for Threaded Fasteners in the Canadian Timber Design Code</td>
<td>Shawn Kennedy, Université Laval, Canada</td>
</tr>
</tbody>
</table>

TRACK 3: STRUCTURAL SYSTEMS

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS087</td>
<td>Behavior Analysis of Conventional Timber Frame Wall Under Seismic Action: Application of N2 Method</td>
<td>Yassine Verdret, FCBA, France</td>
</tr>
<tr>
<td>ABS108</td>
<td>Structural Performance of Portal Frame Constructed with Japanese Cedar Glulam</td>
<td>Min-Chyuan Yeh, National Pingtung University of Science & Technology, Taiwan</td>
</tr>
<tr>
<td>ABS109</td>
<td>Buckling of ‘Blockhaus’ Walls Under In-Plane Vertical Loads</td>
<td>Massimo Fragiacomo, University of Sassari, Italy</td>
</tr>
<tr>
<td>ABS142</td>
<td>Study on Damping Effect of Wooden Bearing Shear Wall</td>
<td>Rika Arai, Nippon Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS144</td>
<td>Study on the Influence of Bearing Shear Wall with Opening</td>
<td>Hideyuki Nasu, Nippon Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS231</td>
<td>Load-Carrying Capacity of a Built-Up Stud Fabricated with Small-Diameter Round Timber</td>
<td>Guofang Wu, Harbin Institute of Technology, China</td>
</tr>
<tr>
<td>ABS244</td>
<td>Development and Evaluation of CLT Shear Wall Using Drift Pinned Joint</td>
<td>Shiochi Nakashima, Kyoto University, Japan</td>
</tr>
<tr>
<td>ABS246</td>
<td>Structural Performance Evaluation of Wooden Framework with Jointed Column</td>
<td>Kota Inuma, Yokohama National University, Japan</td>
</tr>
<tr>
<td>ABS270</td>
<td>Morphological and Stability Research for Tree-Like Timber Structures</td>
<td>Chen Xiaowu, Nanjing University of Technology, China</td>
</tr>
<tr>
<td>ABSTRACT NUMBER</td>
<td>TITLE</td>
<td>PRESENTER, AFFILIATION, COUNTRY</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>ABS288</td>
<td>Experimental Study on the Contribution of GWB to the Lateral Performance of Wood Shearwalls</td>
<td>Zhiyong Chen University of New Brunswick, Canada</td>
</tr>
<tr>
<td>ABS329</td>
<td>Structural Health Monitoring of Wooden Structure by Using Subspace System Identification Based on Shaking Table Tests</td>
<td>Takenori Hida Tokyo University of Science, Japan</td>
</tr>
<tr>
<td>ABS344</td>
<td>Seismic Performance of Wooden House Wetted by Rainfall or Submerging in Water</td>
<td>Kei Tanaka Oita University, Japan</td>
</tr>
<tr>
<td>ABS355</td>
<td>Experimental and Numerical Investigation of Novel Steel-Timber-Hybrid System</td>
<td>Pooja Bhat University of British Columbia, Canada</td>
</tr>
<tr>
<td>ABS356</td>
<td>Mechanical Performances of Timber Connections, Improvement by Mechanical Preparation of the Interfaces: Its Application to Structural Member</td>
<td>Stéphane Girardon ENSTIB, France</td>
</tr>
<tr>
<td>ABS360</td>
<td>Reinforcement of the Support Areas of Glued Laminated Timber Structures</td>
<td>Damien Lathuilière ENSTIB, France</td>
</tr>
<tr>
<td>ABS363</td>
<td>Development of Novel Post-Tensioned Glulam Timber Composites</td>
<td>Emma McConnell Queen's University of Belfast, UK</td>
</tr>
<tr>
<td>ABS372</td>
<td>Development of Bidirectional Rahmen Structure Using a Wood Bonded Composite Panels</td>
<td>Hisamitsu Kajikawa Misawa Homes Institute of R&D, Japan</td>
</tr>
<tr>
<td>ABS380</td>
<td>Geographic Distribution of Construction Systems and Materials of Timber-Related Houses in Japan</td>
<td>Chikako Tabata Mie University, Japan</td>
</tr>
<tr>
<td>ABS385</td>
<td>Experimental Study on Seismic Performance of Mortar Finishing External Wall</td>
<td>Masatos Nakao Yokohama National University, Japan</td>
</tr>
<tr>
<td>ABS441</td>
<td>Hybrid Wood-Masonry Wall Test and Verification of Two-Dimensional Modelling Approach</td>
<td>Lina Zhou University of New Brunswick, Canada</td>
</tr>
<tr>
<td>ABS463</td>
<td>Load Distribution in Lateral Load Resisting Elements of Timber Structures</td>
<td>Zhiyong Chen University of New Brunswick, Canada</td>
</tr>
<tr>
<td>ABS472</td>
<td>Development of High Load Carrying Capacity Shear Wall with Thick Plywood Sheathing for Large Timber Construction</td>
<td>Kenji Aoki Forestry and Forest Products Research Institute, Japan</td>
</tr>
<tr>
<td>ABS512</td>
<td>A New Construction System for CLT Structures</td>
<td>Albino Angeli CNR-IVALSA, Italy</td>
</tr>
<tr>
<td>ABS532</td>
<td>Experimental Study on Lateral Resistance of Timber Post and Beam Systems</td>
<td>Haibei Xiong Tongji University, China</td>
</tr>
<tr>
<td>ABS570</td>
<td>Torsional Interaction of Two-Story Timber Houses with 3D Eccentricity</td>
<td>Kento Suzuki Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS610</td>
<td>Development of Numerical Analysis Method for Japanese Traditional Wood Houses Considering the Sliding Behavior of Column Ends</td>
<td>Takafumi Nakagawa National Institute for Land and Infrastructure Management, Japan</td>
</tr>
<tr>
<td>ABS654</td>
<td>Considerations Regarding Earthquake-Resistant Design of Wooden Residences Utilizing Measurement Data Taken with a Seismograph for Standalone Residences with Damage Assessment Functionality</td>
<td>Hisamitsu Kajikawa Misawa Homes Institute of R&D, Japan</td>
</tr>
<tr>
<td>ABS655</td>
<td>Stub Girder Flooring System for Timber Construction</td>
<td>Reza Masoudnia University of Auckland, New Zealand</td>
</tr>
<tr>
<td>ABS670</td>
<td>Structural Detail Investigation and Seismic Performance Evaluation for Three-Story Traditional Wooden House in Kanazawa Urban Area</td>
<td>Tatsuru Suda Kanazawa Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABSTRACT NUMBER</td>
<td>TITLE</td>
<td>PRESENTER, AFFILIATION, COUNTRY</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ABS010</td>
<td>Structural Performance of Half Through Arch Timber Highway Bridge</td>
<td>Hideyuki Honda, Kanazawa Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS062</td>
<td>Sensitivity Analysis for Probabilistic Seismic Behaviour of a Wood Frame Building</td>
<td>Jianzhong Gu, Thompson Rivers University, Canada</td>
</tr>
<tr>
<td>ABS149</td>
<td>Seismic Behavior of Cylindrical Wooden Water Tank in Vibration Test</td>
<td>Fukuji Iida, Japan Woodtank and Pipe MFG CO., Japan</td>
</tr>
<tr>
<td>ABS150</td>
<td>Timber Bridges with Asphalt Surfacing – Technical Specifications</td>
<td>Andreas Müller, Bern University of Applied Sciences, Switzerland</td>
</tr>
<tr>
<td>ABS210</td>
<td>Influence of Arrangements of Walls and Opening Roofs to Maximum Seismic Response of Japanese Traditional Wooden House</td>
<td>Koji Yamada, Toyota National College of Technology, Japan</td>
</tr>
<tr>
<td>ABS212</td>
<td>The Study and Proposed Application of the Multi-Storey Hybrid Timber Structural System on the Design Flexibility and Hazard Prevention</td>
<td>Mengting Tsai, University of Tokyo, Japan</td>
</tr>
<tr>
<td>ABS241</td>
<td>Application of Non-Linear Finite Element Dynamic Analysis for Traditional Wooden Structure</td>
<td>Atsuo Takino, Nara Women’s University, Japan</td>
</tr>
<tr>
<td>ABS303</td>
<td>Replacement of Steel Structure for Wooden Structure in Environment Exposed to Marine Aggressiveness</td>
<td>Alexandre Wahrhaftig, Federal University of Bahia, Brazil</td>
</tr>
<tr>
<td>ABS338</td>
<td>Building Damages of Modern Wooden Architectures in Japan by the 2011 Off the Pacific Coast of Tohoku Earthquake</td>
<td>Naoyuki Matsumoto, University of Tokyo, Japan</td>
</tr>
<tr>
<td>ABS347</td>
<td>Structural Performance Assessment of the First Vehicular Timber Bridge in Korea</td>
<td>Sang-Joon Lee, Korea Forest Research Institute, Korea</td>
</tr>
<tr>
<td>ABS407</td>
<td>Structural Evaluation of Traditional Townhouse with Timber Through Column in Japan</td>
<td>Hiromi Sato, University of Tokyo, Japan</td>
</tr>
<tr>
<td>ABS408</td>
<td>Collapsing Analysis of an Old Wooden-House Against a Strong Earthquake Ground Motion</td>
<td>Tomiya Takatani, Maizuru National College of Technology, Japan</td>
</tr>
<tr>
<td>ABS447</td>
<td>Structural Properties Evaluation of Unique Boat House Using Oblique Nuki Part I: Structural Investigation</td>
<td>Noriko Takiyama, Kyoro University, Japan</td>
</tr>
<tr>
<td>ABS464</td>
<td>Reduction of Sand Pressure to the Partition Wall Using Logs in Fish Ladder</td>
<td>Hideyuki Hirasawa, Hakodate National College of Technology, Japan</td>
</tr>
<tr>
<td>ABS501</td>
<td>Seismic Design Method of Hybrid Structure of Wood and RC</td>
<td>Yoshihiro Yamazaki, Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS510</td>
<td>Experimental Study on Seismic Performance of Wooden School Building</td>
<td>Mitsuhito Miyamoto, Kagawa University, Japan</td>
</tr>
<tr>
<td>ABS577</td>
<td>A Seismic Design of 3-Story Building Using Japanese “Sugi” CLT Panels</td>
<td>Kazuyuki Matsumoto, Nihon System Sekkei Architects & Engineers, Japan</td>
</tr>
<tr>
<td>ABS599</td>
<td>Quantitative Evaluation for Influence of Eccentricity to Design Asymmetric Housing Structure with Flexible Rigidity at Floors</td>
<td>Yoichi Mukai, Kobe University, Japan</td>
</tr>
<tr>
<td>ABS604</td>
<td>Shaking Table Tests of Composite Structure of Reinforced Concrete and Timber Frame</td>
<td>Hiroshi Isoda, Kyoto University, Japan</td>
</tr>
<tr>
<td>ABS626</td>
<td>Full-Scale Shaking Table Test of Traditional Timber Structure with Cable Roof Placed Free on Foundation</td>
<td>Kyosuke Mukaibo, Ritsumeikan University, Japan</td>
</tr>
<tr>
<td>ABS628</td>
<td>Racking Performance of Sheathed Shear Wall Fastened with Nails and Screws Together</td>
<td>Yasunobu Noda, Forest Products Research Institute, Japan</td>
</tr>
<tr>
<td>ABS636</td>
<td>Seismic Assessment of Wooden Houses for Tephra Falls of Kirishima Mountain (Shinmoeadeke) in Southern Kyusyu, Japan</td>
<td>Takeshi Yamamoto, Miyakonojo National College of Technology, Japan</td>
</tr>
<tr>
<td>ABS686</td>
<td>The Structural Potential of Bidirectional Rahmen Structure Using a Wood Bonded Composite Panels Method for Medium- and High-Height Structures</td>
<td>Hisamitsu Kajikawa, Misawa Homes Co, Japan</td>
</tr>
<tr>
<td>ABS688</td>
<td>Discrete Bracing of Timber Beams Subjected to Gravity Loads</td>
<td>Anders Klasson, Lund Institute of Technology, Sweden</td>
</tr>
<tr>
<td>ABS689</td>
<td>Seismic Response Analysis for Damped Timber Structure by Simplified Spring Model</td>
<td>Kazuhiro Matsuda, Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>ABS717</td>
<td>Seismic Protection of Timber Platform Frame Building Structures with Hysteretic Energy Dissipators. Feasibility Study</td>
<td>Edgar Segués, Technical University of Catalonia, Spain</td>
</tr>
<tr>
<td>ABSTRACT NUMBER</td>
<td>TITLE</td>
<td>PRESENTER, AFFILIATION, COUNTRY</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>ABS047</td>
<td>Numerical Simulation of the Temperature Field in A Wood-Concrete</td>
<td>Julio Cesar Molina University of São Paulo, Brazil</td>
</tr>
<tr>
<td></td>
<td>Composite Cross Section in Fire</td>
<td></td>
</tr>
<tr>
<td>ABS136</td>
<td>Prediction of Flame Spread Along a Wooden Surface of Wall Against</td>
<td>Koji Harada Oita University, Japan</td>
</tr>
<tr>
<td></td>
<td>Localized Fire</td>
<td></td>
</tr>
<tr>
<td>ABS137</td>
<td>Interactive Visualisation Between Wood-Moisture Relations and</td>
<td>Rafael Passarelli University of Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td>Moisture-Induced Deformations</td>
<td></td>
</tr>
<tr>
<td>ABS139</td>
<td>Acoustic Performance of Timber and Timber-Concrete Composite Floors</td>
<td>Keith Crews University of Technology, Sydney, Australia</td>
</tr>
<tr>
<td>ABS260</td>
<td>Enhancement of Deflection Serviceability Performance of Metal Web</td>
<td>Binsheng Zhang Glasgow Caledonian University, UK</td>
</tr>
<tr>
<td></td>
<td>Joist Timber Floors Using Strongbacks</td>
<td></td>
</tr>
<tr>
<td>ABS268</td>
<td>Intermediate-Scale Furnace Tests for Encapsulation Materials for Use</td>
<td>Joseph Su Natural Resources Canada, Canada</td>
</tr>
<tr>
<td></td>
<td>in Protecting Structural Elements</td>
<td></td>
</tr>
<tr>
<td>ABS320</td>
<td>Influence of Fire Exposure on the Mechanical Properties of Wood</td>
<td>Chihiro Kaku Waseda University, Japan</td>
</tr>
<tr>
<td>ABS365</td>
<td>Estimation of Shear Strength of Nails Driven into Decayed Wood</td>
<td>Takuro Mori Kyoto University, Japan</td>
</tr>
<tr>
<td>ABS440</td>
<td>Fire Resistance of Timber Framed Floor with Isolated Ceiling Assembly</td>
<td>Sang-Joon Lee Korea Forest Research Institute, Korea</td>
</tr>
<tr>
<td>ABS613</td>
<td>Stiffness of Sheathing-to-Framing Connections in Timber Shear Walls</td>
<td>Ida Näsland Luleå University of Technology, Sweden</td>
</tr>
<tr>
<td></td>
<td>– In Serviceability Limit State</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSTRACT NUMBER</th>
<th>TITLE</th>
<th>PRESENTER, AFFILIATION, COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS020</td>
<td>Fuzzy Ventilation Control for Wood-Based Houses in Tropical Climates</td>
<td>Carmen Riverol University of the West Indies, Trinidad and Tobago</td>
</tr>
<tr>
<td>ABS037</td>
<td>Cross-Laminated Round-Wood Panel: Design Guidelines in the State of</td>
<td>Rafael Passarelli University of Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td>São Paulo</td>
<td></td>
</tr>
<tr>
<td>ABS090</td>
<td>Timber Architecture Education Using Active Learning Method. Short-Course</td>
<td>Rafael Passarelli University of Tokyo, Japan</td>
</tr>
<tr>
<td></td>
<td>Case Study on University of São Paulo’s Faculty of Architecture</td>
<td></td>
</tr>
<tr>
<td>ABS096</td>
<td>Small Scale Models, Timber Construction and the Teaching of Architecture: A Brazilian Experience</td>
<td>Ivan do Valle University of Brasilia, Brazil</td>
</tr>
<tr>
<td>ABS099</td>
<td>The Contribution of Zanine Caldas to Timber Construction in Brasilia: Four Projects of Self-Taught Architect</td>
<td>Ivan do Valle University of Brasilia, Brazil</td>
</tr>
<tr>
<td>ABS285</td>
<td>Comparison of Construction Types Using Analytic Hierarchy Process – Case Study Timber Passive House</td>
<td>Milan Sernek University of Ljubljana, Slovenia</td>
</tr>
<tr>
<td>ABS328</td>
<td>Seismic Performance of Aged and Deteriorated Wooden Joints of Japanese Traditional Timber Structures</td>
<td>Yu Ooka Ritsumeikan University, Japan</td>
</tr>
<tr>
<td>ABS361</td>
<td>Hut Emergency Evacuation in the Event of a Disaster of Using the Wooden Panel</td>
<td>Akito kikuchi Akito Kikuchi Architect & Associates, Japan</td>
</tr>
<tr>
<td>ABS496</td>
<td>Analysis of Western Wooden Structure Technology’s Influence on Yangzhou Wooden Architecture in Modern Times</td>
<td>Yan Liu Yangzhou University, China</td>
</tr>
<tr>
<td>ABS574</td>
<td>Verifying the Validity of Studying and Archiving Design Language Based on Timber Structures from the Perspective of Adaptation to Actual Construction</td>
<td>Atsushi Tabuchi Kyoto University, Japan</td>
</tr>
<tr>
<td>ABS590</td>
<td>Timber Gridshells: Design Methods and Their Application to a Temporary Pavilion</td>
<td>Dragos Naicu University of Bath, UK</td>
</tr>
<tr>
<td>ABS625</td>
<td>The Untapped Potential of Wood in Developing Energy-Efficient Living Spaces</td>
<td>Lauri Linkosalmi Aalto University, Finland</td>
</tr>
<tr>
<td>ABS653</td>
<td>Low-Cost Housing with Prefab Wood-Bamboo Panels</td>
<td>Vladimir Rodriguez Trujillo Catalan Institute of Wood, Spain</td>
</tr>
<tr>
<td>ABS672</td>
<td>A New Version of Timber Structures at the Cerrado’s Excellence Centre in Brasilia, Brazil</td>
<td>Roberto Lecomte De Mello Spirale Architecture, Brazil</td>
</tr>
<tr>
<td>ABS719</td>
<td>This is Hardcore: CNC Prototypes for Timber Cores – Designing Multi-Storey Timber Buildings from the Inside Out</td>
<td>Alex Kaiser Ordinary Ltd., UK</td>
</tr>
<tr>
<td>ABS720</td>
<td>Against the Grain: Redefining the Living Unit – Advanced Slotting Strategies for Multi-Storey Timber Buildings</td>
<td>Alex Kaiser Ordinary Ltd., UK</td>
</tr>
</tbody>
</table>